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One-Dimensional Lattice Dynamics of the
Diffusion-Limited Reaction A+A � A+S :
Transient Behavior

Enrique Abad,1 Harry L. Frisch,2 and Gregoire Nicolis1

Received December 16, 1999; final February 1, 2000

We use a Boolean cellular automaton model to describe the diffusion-limited
dynamics of the irreversible reaction A+A � A+S on a 1D lattice. We derive
a set of equations for the dynamics of the empty interval probabilities from
which explicit expressions for the particle concentration and the two-point
correlation can be obtained. It is shown that the long-time dynamics is in agree-
ment with the off-lattice solution. The early-time behavior, however, predicts a
slower decay of the concentration.

KEY WORDS: Nonequilibrium reaction�diffusion systems; cellular auto-
mata; differential-difference equations.

I. INTRODUCTION

In a recent paper, (1) ben-Avraham et al. treated the 1D dynamics of the
diffusion-limited reaction A+A � A+S. The analysis led to an infinite
hierarchy of differential equations (HDE) for the time evolution of the set
of quantities [Ek(t)], where Ek(t) denotes the probability of finding an
interval of k contiguous empty lattice sites (c.f. Eqs. (2.2) and (2.5) in
ref. 1). Ben-Avraham et al. were primarily interested in the continuum limit
for the probability densities Ek(t)�(2x)k as the lattice spacing 2x is allowed
to vanish. Here we rederive the HDE taking as a starting point a detailed
cellular automaton description using Boolean occupation numbers.(2, 3)
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Instead of going to the continuum limit, we solve the HDE for a discrete
lattice and obtain explicit expressions for the concentration c(t)=
(1&E1(t))�2x and the two-point nearest neighbor correlation. We consider
both the case of an initially fully occupied lattice and the case in which the
initial probabilities Ek(0) are given by the random ``geometrical'' distribution
(1&\)k, where \<1 is the initial probability of a single site being
occupied. Some exact solutions to related problems and a special case can
be found in ref. 4.

In Section II, we derive the HDE starting from the cellular automaton
dynamical rule. The next section is a brief reminder of the off-lattice solu-
tion for the HDE obtained in ref. 1. In Section IV, we solve the solution
of the HDE for a discrete lattice and discuss the transient dynamics of
the concentration. As expected, the long-time behavior is the same as
that found in ref. 1. However, the early-time behavior turns out to be
significantly different.

II. DERIVATION OF THE HDE

Consider a 1D lattice with N sites. Each lattice site i is characterized
by a Boolean occupation number ni=1 or 0 depending on whether it is
occupied by a single particle (A) or empty (S). At each time step 2t, we
choose randomly a site i in the lattice via the Boolean stochastic parameter
!(i)

N . This parameter is equal to 1 for the chosen site and 0 for all other sites.
Simultaneously, a second Boolean variable is used to select the left (!L=1)
or the right neighbour site (!L=0) with equal probability 1�2. If the site i
is occupied, the particle will hop to the chosen neighbor site with a rate kD

given by the mean value of the stochastic Boolean parameter !D . In this
case, if the neighbour site is empty, the particle will occupy it vacating the
site i. We express this by including the loss terms

&! (i)
N (t) !L(t) !D(t) ni (t)(1&ni&1(t)) (1)

&! (i)
N (t)(1&!L(t)) !D(t) n i (t)(1&n i+1(t)) (2)

in the dynamical rule for ni (t). If the neighbor site is filled, the particle
will ``react'' with it and instantaneously disappear. Again, the occupation
number at site i will be decreased from 1 to 0. Thus, we have the reactive
loss terms:

&! (i)
N (t) !L(t) !D(t) n i(t) ni&1(t) (3)

&! (i)
N (t)(1&!L(t)) !D(t) ni (t) n i+1(t) (4)
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Finally, as an empty site i can only be occupied by hopping from a particle
at a neighbor site, one has the two gain terms:

+! (i+1)
N (t) !L(t) !D(t) ni+1(t)(1&ni (t)) (5)

+! (i&1)
N (t)(1&!L(t)) !D(t) ni&1(t)(1&n i (t)) (6)

Clearly, the dynamics described above corresponds to the particular
implementation of the reaction A+A � A+S given in ref. 1. Adding up all
the contributions (1)�(6), we obtain the following dynamical rule:

ni (t+2t)=n i (t)&! (i)
N (t) !D(t) n i (t)

+! (i+1)
N (t) !L(t) !D(t) ni+1(t)(1&ni (t))

+! (i&1)
N (t)(1&!L(t)) !D(t) ni&1(t)(1&n i (t)), i=1,..., N

(7)

In the first and last equation (7), we set n0(t)=nN+1(t)=n1(t). We can
rewrite (7) by using the complementary occupation numbers si (t)=1&ni (t):

si (t+2t)=si (t)+! (i)
N (t) !D(t)

&[! (i&1)
N (t)(1&!L(t))+! (i)

N (t)+! (i+1)
N (t)!L(t)] !D(t) si (t)

+! (i&1)
N (t)(1&!L(t)) !D(t) si&1(t) si (t)

+! (i+1)
N (t) !L(t) !D(t) si (t) si+1(t), i=1,..., N (8)

This is a more convenient form, since, as it turns out, the evolution law for
a string of k consecutive empty sites > i+k&1

j=i sj involves only products of
contiguous occupation numbers

`
i+k&1

j=i

sj (t+2t)= `
i+k&1

j=i

sj (t)+! (i)
N (t) !L(t) !D(t) `

i+k&1

j=i+1

sj (t)

+! (i+k&1)
N (t)(1&!L(t)) !D(t) `

i+k&2

j=i

sj (t)

&[! (i&1)
N (t)(1&!L(t))+! (i)

N (t) !L(t)

+! (i+k&1)
N (t)(1&!L(t))+! (i+k)

N (t) !L(t)]

_!D(t) `
i+k&1

j=i

sj (t)+! (i&1)
N (t)(1&!L(t)) !D(t) `

i+k&1

j=i&1

sj (t)

+! (i+k)
N (t) !L(t) !D(t) `

i+k

j=i

s j (t), k�2 (9)
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Let us take the time step 2t equal to 1�N, implying that each site has been
visited once on average after one time unit. If we now average (9) over an
ensemble of realizations for a given initial configuration, we obtain in the
thermodynamic limit N � �:

dE i
k

dt
=

kD

2
(E i+1

k&1+E i
k&1&4E i

k+E i&1
k+1+E i

k+1) (10)

where E i
k(t)=> i+k&1

j=i sj (t). For a single site (k=1) the corresponding
equation

dE i
1

dt
=kD \1&2E i

1+
1
2

E i&1
2 +

1
2

E i
2+ (11)

is obtained by averaging the dynamical rule (8). If we perform the average
over realizations and translationally invariant initial conditions, we get the
following hierarchy of differential-difference equations for the evolution of
the averaged products Ek(t)=(> i+k&1

j=i sj (t)):

dEk

dt
=kD(Ek+1&2Ek+Ek&1), k=1, 2,... (12)

with the boundary condition E0(t)=1. As described in ref. 1, the r.h.s. of
(12) represents the net flux due to particle diffusion into and out of an
empty site interval, whereas the effect of reaction enters through the bound-
ary condition.

III. OFF-LATTICE SOLUTION

Following ref. 1, we set the hopping rate kD �2 to either of both sides
equal to D�(2x)2, where 2x is the lattice spacing. On long length and time
scales this yields normal diffusion with a diffusion coefficient D. With this
definition, Eqs. (12) are identical to those derived in ref. 1. If we now let
2x � 0, Eqs. (12) become

�E(x, t)
�t

=2D
�2E(x, t)

�x2 (13)

with the boundary conditions E(0, t)=1 and E(�, t)=0. In this limit, the
concentration (number of particles per unit length) is expressed as

c(t)=&
�E(x, t)

�x }x=0

(14)
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Thus, one can determine the time dependence of the concentration by
solving (13) with the boundary conditions given above (see ref. 1 for
details). For the special case of an initially random particle distribution
with a concentration c0 , one has

c(t)
c0

=1&\8c2
0Dt
? +

1�2

+o(c2
0 Dt) as t � 0 (15)

and

c(t) �
1

(2?Dt)1�2 as t � � (16)

IV. SOLUTION FOR A DISCRETE LATTICE

We now proceed to solve the HDE (12) for the case in which one has
an initially full lattice, i.e., Ek(0)=0 for all k�1. To begin with, we absorb
the rate constant kD into the time scale by introducing the dimensionless
time variable {=kD t. The hierarchy then reads:

dEk

d{
=Ek+1&2Ek+Ek&1 , k=1, 2,... (17)

Next we apply the Laplace transform to both sides of (17) and obtain the
homogeneous difference equation

E� k+1&(2+s) E� k+E� k&1=0, k�1 (18)

where E� k(s)=L{ � s[Ek({)]=��
0 exp(&s{) Ek({) d{. The boundary condi-

tion is given by E� 0(s)=1�s. This second-order difference equation is solved
with the ansatz Ek(s)=*k(s). This leads to the quadratic equation

*2&(2+s) *+1=0 (19)

which has the two solutions

*\=
s+2\- s2+4s

2
(20)
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The general solution of (18) is obtained as a linear superposition of *k
+

and *k
& :

E� k(s)=A(s) *k
&(s)+B(s) *k

+(s) (21)

For k � �, the physically acceptable solution of (18) must satisfy the
implicit boundary condition E�(s)=0. To avoid the divergence of the
second term in (21), we must therefore set B(s)=0. Using the other bound-
ary condition at k=0, we find A(s)=1�s. Thus, we have:

E� k(s)=
1
s \

s+2&- s2+4s
2 +

k

(22)

Clearly, the most interesting quantity is E� 1(s), whose inverse Laplace trans-
form E1({) is the probability that a randomly chosen site be empty. By virtue
of a theorem, (7) the inverse transform L&1

s � {[E� k(s)] is given by the integral

|
{

0
vk({$) d{$, k=1, 2,... (23)

where

vk({)=L&1
s � { {\s+2&- s2+4s

2 +
k

==k
exp(&2{) Ik(2{)

2{
(24)

(see, e.g., [5, p. 379]), where

In(x)= :
�

r=0

(x�2)2r+n

r! 1 (r+n+2)
(25)

are the modified Bessel functions. In particular, one has

E1({)=|
{

0

exp(&2{$) I1(2{$)
{$

d{$ (26)

A. Asymptotics for Early Times

For sufficiently short times ({<<1), we can use (25) and the series
expansion of the exponential function exp(&2{$) to expand the integrand
in (26) in powers of {$. Neglecting terms of order o({$3), performing the
integration and undoing the time scaling, we obtain:

E1(t)=kD t&k2
D t2+ 5

6 k3
D t3+o(t4) (27)
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The particle concentration is

c(t)=
P1(t)
2x

=
1&E1(t)

2x
=c0[1&2c2

0 Dt+4c4
0D2t2+o(c6

oD3t3)] (28)

where c0=1�2x. This is in clear disagreement with the decay law (15).
For sufficiently short times, we can neglect the effect of large clusters

of vacant sites, since the chain is initially full. This is done by setting Ek=0
for k larger than a certain cutoff size kc in the truncation hierarchy (17).
If we set kc=1, we obtain the differential equation

dE1

d{
=1&2E1({) (29)

The solution reads

E1({)= 1
2 (1&exp(&2{))={&{2+ 2

3 {3+o({4) (30)

Setting {=kD t, we see that the early times expansion (27) is reproduced
correctly up to the quadratic term. The discrepancy between (27) and the
off-lattice solution arises due to the finite propagation velocity of a local
perturbation in concentration, as opposed to the infinite propagation
velocity characteristic of diffusion. Thus, we expect a slower decay of the
concentration c(t) on the lattice.

B. Long-Time Asymptotics

For large times ({>>1), we write E1({) as follows:

E1({)=u&|
�

{

exp(&2{$) I1(2{$)
{$

d{$ (31)

where u is the definite integral

|
�

0

exp(&2{$) I1(2{$)
{$

d{$ (32)

which is equal to 1 [6, p. 236]. The integrand in the second term of (31)
can be expanded using the asymptotic form

I1(x)=
exp(x)

- 2?x \1&
3

8x
+o \ 1

x2++ (33)
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for large x (see e.g., [7, p. 489]). Thus, we get

E1({)=1&
1

2 - ? |
�

{
{$&3�2 d{$+

3

32 - ? |
�

{
{$&5�2 d{$+o({&5�2)

=1&
1

- ?{
+

1

16 - ?{3
+o({&5�2) (34)

This is in agreement with the long time asymptotics of the continuum limit
solution (16).

C. Two-Point Correlation

The explicit expression for the two interval probability

E2({)=2 |
{

0

exp(&2{$) I2(2{$)
{$

d{$ (35)

can be used as a starting point to compute the asymptotics of the two-point
nearest neighbor correlation c(2)(t)=P2 �(2x)2, where P2=1&2E1+E2 is
the probability of finding two contiguous particles in the lattice. For early
times one gets c(2)(t)=c2

0[1&c2
0 Dt+o(c4

0 D2t2)], whereas for long times
c(2)(t)r1�c0 - 32? (Dt)3�2.

D. Solution for an Arbitrary Initial Concentration

In this case, we average over all possible initial configurations of the
lattice with a given concentration c0=\�2x (\<1). The initial conditions
for the empty interval probabilities now read

Ek(0)=(1&\)k, k=1, 2,... (36)

The boundary conditions are the same as in the case of an initially full
lattice. If we now apply the Laplace transform to (17), we obtain

E� k+1&(2+s) E� k+E� k&1=&(1&\)k, k�1 (37)

which differs from (18) by the inhomogeneity on the r.h.s. Like in the
theory of ordinary differential equations, the general solution of (37) can be
written as the sum of the general solution (21) for (18) and a particular
solution which we seek in the form

E� par
k (s)=(1&\)k C(s) (38)
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Inserting this ansatz in (37), we find

C(s)=
(1&\)

(1&\) s&\2 (39)

The boundary condition for k � � again imposes B(s)=0. From the
boundary condition for E� 0(s) we obtain

A(s)=
1
s

&
1&\

(1&\) s&\2 (40)

Putting (39) and (40) into the equation

E� k(s)=A(s) *n
&(s)+E� par

k (41)

we find

E� k(s)=\1
s

&
1&\

(1&\) s&\2+_s+2&- s2+4s
2 &

k

+
(1&\)k+1

(1&\) s&\2 , k=0, 1,... (42)

We can now use the convolution theorem for the Laplace transform(7) to
invert (42). This yields

Ek({)=k |
{

0

exp(&2{$) Ik(2{$)
{$

d{$

+_(1&\)k&k |
{

0

exp(&[2+(\2�(1&\))] {$) Ik(2{$)
{$

d{$&
_exp \ \2 {

1&\+ (43)

However, we can study the asymptotics directly from (42) by making use
of the Tauberian theorems, (8) which allow us to determine the behavior of
E1({) for { � 0 and { � � by inverting respectively the series expansion of
E� 1(s) around s=� and s=0. For small s one has

E� 1=
1
s

&
1

- s
+

1
2

+
1&\

\
+o(s1�2) (44)

14051D Lattice Dynamics of Diffusion-Limited Reaction A+A � A+S



from which we get

E1r1&
1

- ?{
for { � � (45)

Again, this is in agreement with (16). The long time asymptotics does not
depend on the initial concentration c0 , suggesting that a universal behavior
also takes place on a finite lattice. In the opposite limit we have

E� 1=
1&\

s
+

\2

s2 &
\2(1+\)

s3 +o(s4) (46)

Inverting term by term the r.h.s. of (46), we get

E1=1&\+\2{&
\2(1+\)

2
{2+o({3) (47)

leading to

c(t)=c0 _1&
2
\

c2
0Dt+2

\2(\+1)
\5 c4

0D2t2+o(c6
0D4t4)& (48)

Thus, the discrepancy with (15) appears to be robust. We can again com-
pare the exact early-time expansion (47) with the solution of the differential
equation (29) with the initial condition E1(0)=1&\, which is given by

1
2+( 1

2&\) exp(&2{)=1&\+(2\&1) {+(1&2\) {2+o({3) (49)

As expected, the approximation based on the neglect of empty intervals
becomes worse as \ decreases.
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